腾佑旗下产品:
云服务器 智能五合一建站 咨询热线:400-996-8756
绑定享折扣 注册百度云
百度人脸识别
人脸识别 文字识别 图像识别 语音识别
  • 最新资讯
  • 热门资讯
  • 最热资讯
人工智能http://ai.tuidc.com/templets/default/img/advertising_space_right_3.jpg

AI自助换背景的实时人像扣图算法开源啦

发布时间:2021-08-30 10:13 作者:未知

简述:今天个给大家分享的是AI自助换背景的超强实时人像扣图算法开源的信息,下面我们一起来看具体详情!

  今天个给大家分享的是AI自助换背景的超强实时人像扣图算法开源的信息,下面我们一起来看具体详情!
  谈到人像抠图想必大家都不陌生。在影视剪辑、直播娱乐、线上教学、视频会议等场景中都有人像分割的身影,它可以帮助用户实时、精准地将人物和背景精准识别出来,实现更精细化的人物美颜、背景虚化替换、弹幕穿人等,进一步提升视觉应用体验。
 
AI自助换背景的实时人像扣图算法开源啦
AI自助换背景的实时人像扣图算法开源啦
 
  高精度的实时人像抠图模型一直是学术和产业界研究的重点,为此PaddleSeg团队开源了多场景覆盖的PP-HumanSeg人像系列模型:
  PP-HumanSeg提供了3个高精度的人像分割模型:
  有应用于服务端GPU部署的PP-HumanSegl模型,有适用于移动端的轻量PP-HumanSegm模型,还有能够在浏览器部署的超轻量模型PP-HumanSegs模型。
  提供了完善的服务端、移动端、Web端部署文档,尤其是Web端提供了产业级的实时人像分割解决方案。
 
AI自助换背景的实时人像扣图算法开源啦
 
  近期“百度视频会议”也上线虚拟背景功能,支持用户在视频会议时进行人像背景切换。这个功能正是基于PP-HumanSeg提供的超轻量的PP-HumanSegs来实现。通过Padddle.js实现了在Web端部署,直接利用浏览器的算力进行实时人像抠图,效果受到一致好评!
 
AI自助换背景的实时人像扣图算法开源啦
 
  模型性能如此之好,是不是迫不及待地想知道如何实现的?
  大规模数据合成和数据增强
  在训练集里有各种比例的图片,有横屏的,有竖屏的。如果直接使用缩放变形等数据增强方式,会直接导致形变失真,反而不会提升精度。针对此类问题,采用维持图像纵横比缩放、Padding补齐等方式缩放图像达到原图比例。通过这些方式处理后图像不会失真,训练精度也得到了提升。
 
AI自助换背景的实时人像扣图算法开源啦
 
  针对人像标注样本少的问题,使用标注信息和背景图合成的方式进行数据生成,数据量的扩充提升了模型的精度。
 
AI自助换背景的实时人像扣图算法开源啦
 
  轻量级网络设计方式
  对于移动端和网页端的人像分割,一个高效的轻量级网络必不可少,在这里为大家总结了一些轻量化关键设计方法。
  关键一:深度可分离卷积
  深度可分离卷积是一种卷积分解方式,将普通卷积分解为Depthwise Convolution和Pointwise Convolution,主要目的是减少计算量和参数量,此方式已被广泛应用在轻量级卷积网络中。
  关键二:Channel Shuffle(通道洗牌)
  在深度可分离卷积中用到的Depthwise Convolution会将所有的channel分组,每个channel分为一组,这就导致组与组之间无信息交换。Channel Shuffle通过对group convolution之后的特征图进行“重组”,可以保证接下了采用的group convolution输入来自不同的组,因此信息可以在不同组之间流转。
 
AI自助换背景的实时人像扣图算法开源啦
 
  关键三:Skip-connection(跳跃连接)
  对于分割任务,空间域信息非常重要。主流的分割网络均采用encoder-decoder结构。网络的encoder部分通过下采样层把特征图分辨率降得非常小,这一点不利于精确的分割mask生成,通过skip-connection跨层连接编码器和解码器,更利于生成精细的mask。Skip-connection直接复用encoder的特征,几乎不增加计算量,性价比非常之高!
  关键四:上采样方法
  Decoder的主要目的是将低分辨率信息的特征恢复到高分辨率。为了实现这个目的就需要上采样。常用的上采样方式有四类:转置卷积、反池化、插值、亚像素卷积。
  当使用转置卷积进行上采样的时候,容易出现棋盘效应(左图肩膀处)。开发团队为平衡计算量、显存占用和效果,最终采用深度可分离卷积+双线性插值,在保持高效计算的同时解决了棋盘效应问题。
 
AI自助换背景的实时人像扣图算法开源啦
 
  综合考虑上述四个关键,开发团队设计了Web端超轻量级模型PP-HumanSegs。
 
AI自助换背景的实时人像扣图算法开源啦
 
  优化损失函数解决类别不均衡
  人像在整张图片中所占的比例往往较小,存在前景背景类别占比不均衡的问题。常用的Cross Entropy Loss会公平处理正负样本,当出现正样本占比较小时,就会被更多的负样本淹没。通过改变损失函数,使用Lovasz loss来降低正负样本不均衡的问题。
  光流后处理优化
  视频分割存在一个问题:视频帧间不连贯,边缘部分闪烁严重,为此研发团队利用时序信息结合光流法,对分割结果进行优化。采用光流解决方法,将光流预测结果与分割结果进行融合,这样就可以参考上一帧的运动信息,使得前后帧变换相对更加稳定,减少边缘的闪烁。
 
AI自助换背景的实时人像扣图算法开源啦
AI自助换背景的实时人像扣图算法开源啦
 
  原图(左)未加光流效果(中)加光流效果(右)
 
  心动不如行动,大家可以直接前往Github地址获得完整开源项目代码,记得Star收藏支持一下哦:
  https://github.com/PaddlePaddle/PaddleSeg
  更多AI人像扣图算法相关内容,百度云服务中心持续分享中!
点击展开全文

腾佑AI(ai.tuidc.com) 成立于2007年,一直致力于发展互联网IDC数据中心业务、云计算业务、 CDN业务、互联网安全及企业客户技术解决方案等产品服务, 2018年成为百度云河南服务中心。主营服务器租用,服务器托管,虚拟主机, 域名注册,机柜租用,主机租用,主机托管,带宽租用,云主机,CDN加速 , WAF防火墙,网络安全,人脸识别,文字识别,图像识别,语音识别等业务;

售前咨询热线:400-996-8756

备案提交:0371-89913068

售后客服:0371-89913000

热门活动

腾佑智能建站
  • 热门资讯
  • 随便看看

联系方式

400-996-8756 点击这里给我发消息 AI@tuidc.com
腾佑AI人工智能

微信公众号

腾佑AI人工智能

手机站

COPYRIGHT 2007-2020 TUIDC ALL RIGHTS RESERVED 腾佑科技-百度AI人工智能_百度人脸识别_图像识别_语音识别提供商

地址:河南省郑州市姚砦路133号金成时代广场6号楼13层 I CP备案号:豫B2-20110005-1 公安备案号: 41010502003271

声明:本站发布的内容版权归郑州腾佑科技有限公司所有,本站部分素材来源于网络及网友投稿,若无意中侵犯了您的版权,请致电在线客服我们将在核实后予以删除!